Ultrasound and magnetic resonance imaging in the prenatal diagnosis of open spina bifida

Romeo Micu, Anca Lucia Chicea, Dan Georgian Bratu, Paula Nita, Georgiana Nemeti, Radu Chicea

Abstract


Open spina bifida, also known as spina bifida aperta is a neural tube defect involving the lack of closure of vertebral arches and associated meninges and/or spinal cord abnormalities.Ultrasound examination is the gold standard for the diagnosis of spina bifida aperta. It represents the main imaging tool used to ascertain this diagnosis early in gestation. Three-dimensional ultrasound is necessary to detect the level and the size of the defect. Magnetic resonance imaging (MRI) represents a more sensitive tool, giving specific information of the defect and associated anomalies, playing an important role in ruling out differential diagnosis. Due to the advent of MRI use, it is possible today to achieve in utero treatment of fetuses with this pathology. The aim of the current review is to provide an update of literature regarding the role of ultrasound and MRI in the prenatal diagnosis of spina bifida aperta.


Keywords


spina bifida; magnetic resonance imaging; Chiari II; ultrasound; prenatal diagnosis

Full Text:

PDF

References


Copp AJ, Adzick NS, Chitty LS, Fletcher JM, Holmbeck GN, Shaw GM. Spina Bifida. Nature reviews Disease primers. 2015;1:15007.

Iliescu D, Comanescu A, Antsaklis P et al. Neuroimaging parameters in early open spina bifida detection. Further benefit in first trimester screening?, Rom J Morphol Embryol 2011, 52(3):809–817.

Coleman BG, Langer JE, Horii SC. The diagnostic features of spina bifida: the role of ultrasound, Fetal Diagn Ther. 2015;37(3):179-96.

Sepulveda W, Wong AE, Sepulveda F, Alcale JL, Devoto JC, Felipe O. Prenatal diagnosis of spina bifida: from intracranial translucency to intrauterine surgery, Child’s Nervous System 2017, 33(7):1083-1099.

Meller C, Aiello H, Otaño L. Sonographic detection of open spina bifida in the first trimester: review of the literature, Child’s Nervous System July 2017, Volume 33, Issue 7, pp 1101-1106 2017; 33(7):1101-1106.

Scheier M, Lachmann R, Pětroš M, Nicolaides KH. Three-dimensional sonography of the posterior fossa in fetuses with open spina bifida at 11-13 weeks' gestation. Ultrasound Obstet Gynecol. 2011;38(6):625-9.

Markov D, Pavlova E, Atanasova D, Markov P, Ivanov S. Absent intracranial translucency-new ultrasound marker for spina bifida at 11-13+6 weeks of gestation. Akush. Ginekol. (Sofia). 2010;49(6):56-60.

Noel AE, Brown RN, Advances in evaluating the fetal skeleton, Int J Womens Health. 2014;6:489–500.

Szabó A, Szili K, Szabó JT, et al. Nasal bone length: prenasal thickness ratio: a strong 2D ultrasound marker for Down syndrome. Prenatal Diagnosis. 2014;34(12):1139-1145.

Wallny T, Schild RL, Fimmers R, Hansmann ME. Three-dimensional sonographic evaluation of the fetal lumbar spinal canal. Journal of Anatomy. 2002;200(5):439-443.

Dicke JM, Piper SL, Goldfarb CA. The utility of ultrasound for the detection of fetal limb abnormalities – a 20-year single-center experience. Prenatal Diagnosis. 2015;35(4):348-353.

Zheng L-P, Gong L-L, Guo F-C, Chang H-B, Liu G-H. Application research on three-dimensional ultrasonic skeletal imaging mode in detecting fetal upper jaw bone. International Journal of Clinical and Experimental Medicine. 2015;8(8):12219-12225.

Guguloth A, Aswani Y, Anandpara KM. Prenatal diagnosis of hypophosphatasia congenita using ultrasonography. Ultrasonography. 2016;35(1):83-86.

Cameron M, Moran P., Prenatal screening and diagnosis of neural tube defects., Prenat Diagn. 2009 Apr;29(4):402-11. doi: 10.1002/pd.2250.

Bahlmann F, Reinhard I, Schramm T, et al. G Cranial and cerebral signs in the diagnosis of spina bifida between 18 and 22 weeks of gestation: A German multicentre study, Prenat Diagn 2015;35:228–235.

D'Addario V, Pinto V, Del Bianco A, et al. The clivus-supraocciput angle: a useful measurement to evaluate the shape and size of the fetal posterior fossa and to diagnose Chiari II malformation., Ultrasound Obstet Gynecol. 2001 Aug;18(2):146-9.

Bethune M, Alibrahim E, Davies B, Yong E. A pictorial guide for the second trimester ultrasound. Australasian Journal of Ultrasound in Medicine. 2013;16(3):98-113.

De Keersmaecker B, Claus F, De Catte L. Imaging the fetal central nervous system. Facts, Views & Vision in ObGyn. 2011;3(3):135-149.

Callen P. Ultrasonography in Obstetrics and Gynecology. Philadelphia: Saunders Elsevier, 2008.

Merz E. Ultrasound in Obstetrics and Gynecology. Stuttgart: Georg Thieme Verlag, 2013.

The International Society of Ultrasound in Obstetrics and Gynecology, Sonografic examination of the fetal nervous system: guidelines for performing the basic examination and the fetal neurosonogram in Ultrasound Obstetrics and Gynecology 2007;29:109-116.

Leibovitz Z , Haratz KK, Malinger G, Shapiro I, Pressman C. Fetal posterior fossa dimensions: normal and anomalous development assessed in mid-sagittal cranial plane by three-dimensional multiplanar sonography. Ultrasound Obstet Gynecol. 2014;43(2):147-53.

Buyukkurt S, Binokay F, Seydaoglu G, et al. Prenatal determination of the upper lesion level of spina bifida with three-dimensional ultrasound. Fetal Diagn Ther. 2013;33(1):36-40.

Paoletti D, Robertson M, Sia SB. A sonographic approach to prenatal classification of congenital spine anomalies. Australasian Journal of Ultrasound in Medicine. 2014;17(1):20-37.

Grigore M, Iliev G, Gafiteanu D, Cojocaru C. The fetal abdominal wall defects using 2D and 3D ultrasound. Pictorial essay. Med Ultrason 2012;14(4):341-347.

Grigore M, Iliev G. Diagnosis of sacrococcygeal teratoma using two and three-dimensional ultrasonography: two cases reported and a literature review. Med Ultrason 2014;16(3):274-277.

Werner Júnior H, dos Santos JL, Belmonte S, et al. Applicability of three-dimensional imaging techniques in fetal medicine. Radiologia Brasileira. 2016;49(5):281-28728.

Loureiro T, Ushakov F, Montenegro N, Gielchinsky Y, Nicolaides KH., Cerebral ventricular system in fetuses with open spina bifida at 11-13 weeks' gestation., Ultrasound Obstet Gynecol. 2012 Jun;39(6):620-4. doi: 10.1002/uog.11079.

Tortori-Donati P, Rossi A, Cama A. Spinal dysraphism: a review of neuroradiological features with embryological correlations and proposal for a new classification. Neuroradiology. 2000 Jul;42(7):471-91.

Lachmann R, Chaoui R, Moratalla J, Picciarelli G, Nicolaides KH. Posterior brain in fetuses with open spina bifida at 11 to 13 weeks. Prenat Diagn. 2011;31:103–6.

Lachmann R, Sinkovskaya E, Abuhamad A. Posterior brain in fetuses with Dandy-Walker malformation with complete agenesis of the cerebellar vermis at 11–13 weeks: a pilot study. Prenat Diagn. 2012;32:765–9.

Orlandi E, Rossi C, Perino A, Cucinella G, Orlandi F. Prospective sonographic detection of spina bifida at 11-14 weeks and systematic literature review. J Matern Fetal Neonatal Med. 2016;29(14):2363-7.

Kose S, Altunyurt S, Keskinoglu P. A prospective study on fetal posterior cranial fossa assessment for early detection of open spina bifida at 11-13 weeks. Congenit Anom (Kyoto) 2017 Apr 5, doi: 10.1111/cga.12223.

Kappou D, Papastefanou I, Pilalis A, Kavalakis I, Kassanos D, Souka AP. Towards detecting open spina bifida in the first trimester: the examination of the posterior brain. Fetal Diagn Ther. 2015;37(4):294-300.

Karl K, Heling KS, Chaoui R. Fluid area measurements in the posterior fossa at 11-13 weeks in normal fetuses and fetuses with open spina bifida. Fetal Diagn Ther. 2015;37(4):289-93.

Liu M, Liu Y, Li ZH, Yu D. Screening for Fetal Spina Bifida Aperta by the Ultrasound and Intracranial Translucency Examinations at 11-13(+6) Weeks of Gestation. Cell Biochem Biophys. 2015;72(2):439-41.

Robinson AJ, Ederies MA. Diagnostic imaging of posterior fossa anomalies in the fetus. Semin Fetal Neonatal Med. 2016;21(5):312-20.

Loomba R, Shah PH, Anderson RH. Fetal Magnetic Resonance Imaging of Malformations Associated with Heterotaxy. Muacevic A, Adler JR, eds. Cureus. 2015;7(5):e269.

Gholipour A, Estroff JA, Barnewolt CE, et al. Fetal MRI: A Technical Update with Educational Aspirations. Concepts in magnetic resonance Part A, Bridging education and research. 2014;43(6):237-266.

Sammet S. Magnetic Resonance Safety. Abdominal radiology (New York). 2016;41(3):444-451.

Yu S, Zhang R, Wu S, Hu J, Xie Y. An edge-directed interpolation method for fetal spine MR images. BioMedical Engineering OnLine. 2013;12:102.

Nemec U, Nemec SF, Krakow D, et al. The skeleton and musculature on foetal MRI. Insights Imaging 2011;2(3):309–318.

Glenn OA. MR imaging of the fetal brain. Pediatric Radiology. 2010;40(1):68-81.

Simon EM, Goldstein RB, Coakley FV, et al. Fast MR imaging of fetal CNS anomalies in utero. AJNR Am J Neuroradiol. 2000 Oct;21(9):1688-98.

D'Ercole C, Girard N, Boubli L, et al. Prenatal diagnosis of fetal cerebral abnormalities by ultrasonography and magnetic resonance imaging. Eur J Obstet Gynecol Reprod Biol. 1993;50:177–184.

Kumar J, Afsal M, Garg A. Imaging spectrum of spinal dysraphism on magnetic resonance: A pictorial review. World Journal of Radiology. 2017;9(4):178-190.

Rathee S, Joshi P, Kelkar A, Seth N. Fetal MRI: A pictorial essay. The Indian Journal of Radiology & Imaging. 2016;26(1):52-62.

Sefidbakht S, Dehghani S, Safari M, Vafaei H, Kasraeian M. Fetal Central Nervous System Anomalies Detected by Magnetic Resonance Imaging: A Two-Year Experience. Iranian Journal of Pediatrics. 2016;26(4):e4589.

Reddy UM, Filly RA, Copel JA. Prenatal Imaging: Ultrasonography and Magnetic Resonance Imaging. Obstetrics and gynecology. 2008;112(1):145-157

Jarvis D, Mooney C, Cohen J, et al. A systematic review and meta-analysis to determine the contribution of mr imaging to the diagnosis of foetal brain abnormalities In Utero. European Radiology. 2017;27(6):2367-2380.

Wang GB, Shan RQ, Ma YX, et al. Fetal central nervous system anomalies: comparison of magnetic resonance imaging and ultrasonography for diagnosis. Chin Med J (Engl). 2006;119(15):1272-7.

Griffiths PD, Porteous M, Mason G, et al. The use of in utero MRI to supplement ultrasound in the foetus at high risk of developmental brain or spine abnormality. The British Journal of Radiology. 2012;85(1019):e1038-e1045.

Beeghly M, Ware J, Soul J, et al. Neurodevelopmental outcome of fetuses referred for ventriculomegaly. Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2010;35(4):405-416.

Nagaraj UD, Bierbrauer KS, Zhang B, Peiro JL, Kline-Fath BM. Hindbrain Herniation in Chiari II Malformation on Fetal and Postnatal MRI. AJNR Am J Neuroradiol. 2017 May;38(5):1031-1036.

Sutton LN. Fetal surgery for neural tube defects. Best practice & research Clinical obstetrics & gynaecology. 2008;22(1):175-188.

Adzick NS, Thom EA, Spong CY, et al. A Randomized Trial of Prenatal versus Postnatal Repair of Myelomeningocele. The New England journal of medicine. 2011;364(11):993-1004.

Danzer E, Flake AW. In utero Repair of Myelomeningocele: Rationale, Initial Clinical Experience and a Randomized Controlled Prospective Clinical Trial. Neuroembryology and Aging. 2008;4(4):165-174.

Johnson MP, Bennett KA, Rand L, Burrows PK, Thom EA, Howell LJ, Farrell JA, Dabrowiak ME, Brock JW 3rd, Farmer DL, Adzick NS; Management of Myelomeningocele Study Investigators. The Management of Myelomeningocele Study: obstetrical outcomes and risk factors for obstetrical complications following prenatal surgery. Am J Obstet Gynecol. 2016 Dec;215(6):778.e1-778.e9.




DOI: http://dx.doi.org/10.11152/mu-1325

Refbacks

  • There are currently no refbacks.