Sono-palpation and sono-Tinel in musculoskeletal ultrasound examination: use all “sono-senses”. A systematic review

Carmelo Pirri¹, Nina Pirri², Carla Stecco¹, Veronica Macchi¹, Andrea Porzionato¹, Raffaele De Caro¹, Levent Özçakar³

¹Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy, ²Department of Medicine-DIMED, School of Radiology, Radiology Institute, University of Padua, Padova, Italy, ³Department of Physical and Rehabilitation Medicine, Hacettepe University Medical School, Ankara, Turkey

Abstract
Flexibility and dynamic perspective of ultrasound imaging allow for a targeted/focused examination, yielding extra findings. Sonopalpation – also referred as sono-Tinel for nerves – is one of those particular features of ultrasound examination whereby the ultrasound probe is actively ‘manipulated’. It is paramount to ascertain the painful structure/pathology during the evaluation of a patient and it is not possible with other imaging techniques other than ultrasonography. In this aspect, the current review aims to provide an analysis of the literature regarding the use of sonopalpation for clinical and research purposes respectively.

Keywords: ultrasonography; probe; muscle; bone; pain

Introduction

Obtaining accurate ultrasound (US) examination findings is one of the most basic and important skills for medical doctors [1]. US examination allows for non-invasive, real-time, comprehensive and patient/physician-friendly evaluation – compared with other diagnostic imaging techniques [2]. For instance, during interactive imaging, compression of the probe (for localizing the painful/symptomatic region) is commonly referred as sonopalpation [1-3]. It is imperative for an accurate diagnosis as well as for prompting treatment [2,3].

Concerning other clinical scenarios, sonopalpation is used to help in the diagnosis of head and neck masses [4,5]. Similarly, Faust et al [6] demonstrated that it can help physicians to localize pain related to particular organs e.g. in cases of suspected acute pyelonephritis lacking classical features. Another well-known application in medicine is “the sonographic Murphy sign” that has 93.6% of specificity and 63% sensitivity for the diagnosis of acute cholecystitis [7]. Other diverse applications in clinical context have been described, including pelvic inflammatory disease, appendicitis and breast cancer [8-11]. Lichtenstein [12] showed the use of point-of-care US and sonopalpation to identify the source in patients with sepsis. Notably, the term sonopalpation is sometimes different when compared to its use in the musculoskeletal system. Patel et al [13] reported that the integration of US imaging into clinical examination (using ‘sonopalpation’) provides a useful method to diagnose sialolithiasis i.e. with the involvement of the non-scanning hand to palpate and move tissues toward the transducer during real-time scanning.

Likewise, the use of sonopalpation (sono-Tinel for nerves) in neuromusculoskeletal US is important as in other types of sonographic examinations [1-3]. Accordingly, in this review, we discuss the application of sonopalpation in different/painful clinical situations.
Materials and methods

A substantial literature search was carried out to review the literature from 1960 up to January 2023. Three electronic databases, i.e. PubMed, Web of Science and Google Scholar were used to identify all relevant English papers without any category restriction. The MeSH keywords used were: “Sono-palpation”, “Joint”, “Tendon”, “Ligament”, “Muscle”, “Fascia”, “Peripheral nerve”, “Bursa”, “Meniscus”, “Sono-Tinel”. The search strategy was the following: (“Sono-palpation”) OR (“Sono-palpation” AND “Joint”) OR (“Sono-palpation” AND “Tendon”) OR (“Sono-palpation” AND “ligament”) OR (“Sono-palpation” AND “Skeletal Muscle”) OR (“Sono-palpation” AND “Fascia”) OR (“Sono-palpation” AND “Peripheral Nerve”) OR (“Sono-Tinel AND Peripheral Nerve”) OR (“Sono-palpation” AND “Bursa”) OR (“Sono-palpation” AND “Meniscus”). The search was extended through the reference lists of the chosen texts. Relevant secondary references were also captured. Different pathologies/conditions were found in which the use of sonopalpation was fundamental (Table I).

Two reviewers (CP and NP) independently selected the papers by reading their titles and abstracts. A third reviewer (LO) finalized the selection in case of disagreement. After the selection, each paper was independently evaluated by the two authors and the following data were recorded. Any discrepancy was resolved by agreement among the authors. The study flowchart is shown in figure 1.

Results

Skin/subcutaneous tissue

Anderson et al [14] reported that in 38% of cases, foreign bodies can be overlooked at the initial clinical investigation, whereas sonopalpation can help physicians to track down the area/position of deeply located fragments. Sonopalpation was fundamental in precisely locating the exact cause of pain, due to cyst and lipoma as well [15-17]. In addition, sonopalpation also provides insight into better understanding their content (fluid or semi-solid).

Fascia

Pirri et al [15,17-20] showed that fascial sonopalpation can track down fascial involvement in numerous musculoskeletal dysfunctions and that pain management could be tailored accordingly. For instance, persistent scar pain associated with healed surgical incisions after trauma is potentially a debilitating type of fascial pain which can be assessed/detected with sonopalpation [15]. Again, Chang et al [21] reported that sonopalpation was crucial in the differential diagnosis between sesamoid bone avulsion and plantar fasciitis.

Tendon/ligament/bursa

Tendon abnormalities identified with US examination include tendinosis (appearing hypoechoic and possibly swollen), partial or interstitial tears (appearing as anechoic clefts or partial fiber discontinuity), and complete tears (full-thickness tendon discontinuity) [22]. Inspection and sonopalpation of the affected tendon are needed to rule out local edema and ecchymosis, revealing tenderness and mass effect by swelling. In a case of proximal lateral gastrocnemius tendon sprain, Chang et al [23] reported that sonopalpation helped to detect the lesion. Norbury et al [24] showed a case of palmaris longus tendinopathy diagnosed by tenderness upon sonopalpation when

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin/subcutaneous tissue</td>
<td>Cyst, lipoma</td>
</tr>
<tr>
<td>Fascia</td>
<td>Fascitis</td>
</tr>
<tr>
<td>Tendon and ligament</td>
<td>Sprain, (calcific) tendinopathy, enthesopathy</td>
</tr>
<tr>
<td>Bursa</td>
<td>Bursitis</td>
</tr>
<tr>
<td>Skeletal muscle</td>
<td>Strain, atrophy, myositis ossificans</td>
</tr>
<tr>
<td>Joint and capsule</td>
<td>Effusion/synovitis, adhesive capsulitis, loose body (osteochondritis disseccans)</td>
</tr>
<tr>
<td>Cartilage</td>
<td>Degeneration, meniscopathy</td>
</tr>
<tr>
<td>Peripheral nerve</td>
<td>Entrapment</td>
</tr>
<tr>
<td>Bony/periosteum</td>
<td>Erosion and fracture</td>
</tr>
</tbody>
</table>

Table I. Exemplary pathologies for the use of sonopalpation.
compared to the contralateral side. Of note, enthesopathy and spurs with tendon inflammation can also/easily be palpated by the US probe [25]. The use/indications for ligaments are quite similar to those of tendons [26,27]. Concerning bursae, they can readily be evaluated by US examination – also to understand the displacement of its content and their connections [28-30].

Skeletal Muscle

US examination is a validated tool for assessing muscle quantity as well as for the evaluation of muscle injuries [31-33]. With sonopalpation, it is possible to localize the pain and a tear in minor injuries and, in moderate lesions, sonopalpation is also informative with regards to the defect size and presence of hematoma. In subtotal/total muscle tears, it also helps to characterize the functional impairment, muscle retraction and area of severe pain [34,35]. Dynamic imaging with sonopalpation is again essential for the evaluation of muscle hernias [36].

Nerve

Ultrasonographic Tinel sign refers to the compression at the site of the nerve lesion whereby enlarged (and in case of neuromas, disorganized) nerves are commonplace [37,38]. Sono-Tinel sign can also be used to guide biopsy when necessary [38].

Joint/Bone/Meniscus

The demonstration of intra-articular effusion is the most common and main purpose of sonopalpation during the US examination [26,27]. Moreover, US also permits the differentiation between effusion and synovial hypertrophy which might be paramount for several inflammatory conditions [39]. While not being definitive, it might also be possible to distinguish other fluid accumulations of hematogenic or infectious origins. Moreover, intra-articular loose bodies can also be detected/mobilized in joint recesses by sonopalpation – especially for reproducing the painful mechanical conflict [40-43].

Sonopalpation can be effectively used to assess tiny lesions of the bony cortex whereby routine radiographs could be noncontributory [26,27,44]. Concerning menisci, especially their (radial) tears extending towards the outer parts of the joints can be imaged/assessed by probe/limb/joint movements [45].

Discussion

To the best knowledge of the authors, this is a unique review of 43 studies on the use of sonopalpation during neuromusculoskeletal US. Serving as a combination of physical and US examination, its concept perfectly matches with the philosophy of US i.e. being dynamic/interactive and patient/physician friendly. This issue seems to have been reflected to the pertinent literature as well.

Several studies have confirmed that sonopalpation is often used as part of the US examination in patients with soft tissue injuries. The majority of the reviewed papers reported the challenges in making sonopalpation a staple of US examination [14-45]. Herein, it is noteworthy that US examination must be individualized for each/every patient in light of the clinical symptoms/signs/findings. Indeed, the sonographer has the chance/ability to use sonopalpation and receive real-time immediate feedback from the patient [1]. For a clinician, when used effectively, this feature can be second to none for prompt patient evaluation and treatment planning [3]. Joints, ligaments, tendons, fasciae, bursae, muscles, nerves and subcutaneous tissue can all be assessed by this dynamic maneuver with high sensitivity to explore pain [33,37,44].

As US technology is improving, palpation skills using the probe are expected to increase in the future. Accordingly, a systematic approach regarding various landmarks might be necessary to add in US training [45]. Moreover, again with the developing US technology (e.g. artificial intelligence), it would not be unreasonable to consider alternative ‘palpation’ techniques that are currently absent [44,46,47].

To the best of our knowledge, this is the first review about sonopalpation for the evaluation of muscle-skeletal soft tissues. Our review suggests that sonopalpation is superior to US or physical examination alone and is very helpful in the diagnosis and management of various muscle-skeletal soft tissues diseases. This is a commentary that may have excluded other muscle-skeletal soft tissues. Further studies should be carried out to clearly define the role of sonopalpation in diverse clinical conditions.

As a limitation, despite the fact that we systematically conducted a literature search to reduce selection bias, some studies may have been inevitably omitted. Future prospective high-quality studies on the use of sonopalpation during neuromusculoskeletal US examination are definitely welcome.

Conclusions

The flexibility and dynamic capability of US imaging allows for a targeted US examination, which can be effortlessly and individually adjusted/manipulated for each person. Sonopalpation by applying probe pressure under real-time visualization can reveal important information regarding the composition and extent of the underlying neuromusculoskeletal pathology. We eagerly anticipate further research as technology continues to evolve and
the clinical usefulness of ultrasound imaging/examination increases.

Acknowledgements: We acknowledge the Institute of Human Anatomy of University of Padova.

Conflict of interest: none

References

30. Viegas FC, Aguiar RO, Gasparetto E, et al. Deep and superficial infrapatellar bursae: cadaveric investigation of re-