Introduction

Accurate and proper diagnosis of focal liver lesions (FLLs) is of vital importance in clinical practice. Up to date, non-invasive imaging techniques with administration of contrast agents, such as computed tomography (CT), contrast enhanced ultrasound (CEUS), and magnetic resonance (MR) imaging have been widely used to evaluate the morphology and vascularization perfusion of FLLs [1]. However, their diagnostic sensitivity and specificity can be affected by the size of FLLs, which may result in false-positive or false-negative results [2]. In addition, those imaging methods are more expensive, not easily accessible and may have a potential risk of allergic reaction or radiation exposure [3].

Recent technical advances in ultrasound shear wave elastography (SWE) increase the diagnostic efficiency of ultrasound and make it possible to evaluate liver fibrosis and cirrhosis [4,5]. Point shear wave elastography (PSWE) as a part of the second generation of ultrasound SWE methods, includes acoustic radiation force impulse (ARFI) and elastography point quantification (ElastPQ). PSWE improves the feasibility and accuracy of stiffness measurements, even in obese patients and patients with ascites [6]. It enjoys high levels of intraobserver and interobserver agreement [6]. PSWE has been reported to be useful in noninvasively diagnosis and characterization of different solid tumors, which have been found to be stiffer than the surrounding tissues: e.g., breast lesions [7], prostate cancer [8], thyroid cancer [9], lymph nodes [10] and pancreatic masses [11]. Beyond CEUS, CT or MRI, it may help discriminating malignant versus benign masses, particularly with regard to patients unsuitable for contrast enhanced imaging [12].

Up till now, only a few studies have focused on the SWE stiffness quantification of FLLs. Most of them used ARFI technology [13-15], some with 2D SWE using Aixplorer (SuperSonic Imagine, France) [16]. Their re-
results showed that SWE have a relevant diagnostic role in clinical practice [12,14,17-19].

However, only a few data are available so far for ElastPQ technology in evaluation of FLLs [20-23]. Our prospective study aims to evaluate the feasibility of ElastPQ techniques in the differential diagnosis and characterization of histologically proved FLLs.

Material and methods

Institutional board approval

This prospective study was approved by our institutional review board. All patients gave their full informed consent before liver SWE examination. The procedure followed was in accordance with the Declaration of Helsinki.

Patients

Between July 2015 and June 2016, 154 consecutive patients (46 women and 108 men; age range: 15–91 years, mean: 55.5 years±10.3) who were referred to our institution for FLLs SWE assessment were included. The final diagnoses were based on histopathologic results obtained from liver surgery (Table I).

The inclusion criteria were as follows: presence of a solid FLL; plan to accept surgery and histopathological analysis; absence of any previous local treatments (i.e. radiofrequency ablation, percutaneous ethanol injection, trans-arterial chemo-embolization); FLL clearly visualized at gray scale ultrasound with size ≥1.5 cm; localized at least 1.5 cm under Glisson’s capsule with a maximum depth of 7.5 cm. Patients with failed PSWE acquisition (because of tumor depth or location, or of heart beat in the left lobe) were excluded.

ElastPQ measurements

ElastPQ technique was performed with a Philips EPIQ7 unit (Philips Bothell, WA, USA, C5-2 convex array transducer) system. Two experienced radiologists (more than 15 years’ experience in liver ultrasound examination), who were aware of the patients’ clinical histories, performed ultrasound scanning and ElastPQ measurements.

All the ultrasound examinations were performed in patients with fasting conditions, lying in supine position with the right arm in maximum abduction. First, a baseline B-mode ultrasound examination was performed to locate the lesions. We selected a liver area free of visible ducts or vessels. Then, ElastPQ measurements were performed by an intercostal approach, with minimal scanning pressure applied by the operator. A fixed region of interest (ROI) of 0.5 cm × 1.5 cm was placed with a cursor moved by a trackball. Ten valid ElastPQ measurements with breath holding were performed for each lesion. Each measurement region was positioned in the middle of the ROI. The FLL stiffness was expressed in m/s. Regarding the patient with multiple FLL, only the largest or the most conspicuous one on ultrasound was chosen. Ten additional ElastPQ measurements were performed in the normal surrounding liver parenchyma at least 2 cm from the lesion [24], over the same ultrasound scanning section and on the same depth of the focal liver lesions. The ratios of the elasticity of the lesions to the surrounding liver were determined. Time taken for measurements in addition to B-mode ultrasound were calculated and recorded.

Statistical analysis

Values are reported as mean±standard deviation (SD). Mean and median shear wave speed (SWS) of the successful measurements were obtained for each FLLs and the surrounding liver. SWS and SWS ratio in benign and malignant lesions were compared using Mann-Whitney U test. The differences among the SWS of each type of FLLs were evaluated with an analysis of the non-parametric Kruskal-Wallis H test. The optimal elasticity cut-off SWS value and SWS ratio for distinguishing between benign and malignant FLL was assessed by receiver operating characteristic (ROC) curves analysis. The reproducibility of ElastPQ technology was explored by intraclass correlation (ICC) coefficient of reliability analysis. Kappa statistics were calculated to assess interobserver agreement. Statistical analysis was performed with a computer software package (SPSS, version 21.0, IBM corporation, Armonk, USA). Differences were considered significant when the p value <0.05.

Results

Final diagnosis of FLLs

ElastPQ measurements were successfully performed in 154 patients. Single FLLs were detected on 120 pa-
tients and multiple lesions on 34 patients. The median size of those FLLs was 55 mm (size range: 15 - 145 mm; mean±SD: 55±29 mm).

The reproducibility of ElastPQ technology

In this study, the ICC of 10 measurements of ElastPQ was 0.719 (95% CI: 0.658, 0.776), which indicated the good stability of ElastPQ technology. Substantial inter-reader agreement (κ=0.804) was achieved.

ElastPQ measurement results

Ten valid ElastPQ measurements were obtained in all subjects. The mean SWS values for malignant and benign FLLs were 2.77±0.68 m/s and 1.57±0.55 m/s, respectively (p<0.05). The SWS ratio of each FLL to the surrounding liver parenchyma was 2.23±0.49 for malignant and 1.14±0.36 for benign FLLs (p<0.05) (Table II).

The area under the ROC curve in distinguishing malignant from benign lesions was 0.704 for SWS and 0.755 for SWS ratio. The cut off value for differential diagnosis was 2.06 m/s for shear wave speed (SWS) (a) and 1.67 for SWS ratio (b). The dotted horizontal line at the proposed cut-offs indicate most malignant focal liver lesions are above the cut-off line and those for benign ones are below it.

Fig 1. The cut off value for differential diagnosis was 2.06 m/s for shear wave speed (SWS) (a) and 1.67 for SWS ratio (b). The dotted horizontal line at the proposed cut-offs indicate most malignant focal liver lesions are above the cut-off line and those for benign ones are below it.

Discussions

SWE technology increases the diagnostic efficiency of ultrasound and makes it possible to evaluate liver stiffness. In contrast to the evaluation of diffuse parenchymal liver disease, little is known about FLLs characterisation using SWE technology. Here we investigated the value of the ElastPQ technology for the differential diagnosis of benign and malignant FLLs by using histological results as the reference standard.

Previously, ARFI technology turned out as the most widely used method for the evaluation of FLLs. SWS of malignant lesions were proved to be significantly higher compared with benign lesions [17,25,26]. In a recent meta-analysis to evaluate the overall accuracy of elastography in differentiation diagnosis of benign and malignant
Point shear wave speed measurement in differentiating benign and malignant focal liver lesions

Yi Dong et al.

FLLs with liver biopsy as the gold standard, ARFI imaging appears to have high sensitivity (85 to 86%) and specificity (80 to 89%) [27,28]. In our current study, both the mean SWS values and the SWS ratio of malignant FLLs were significantly higher than benign ones (p<0.05). The associated sensitivity and specificity were 80.6% and 88.0% for SWS and 67.3% and 71.2% for SWS ratio, respectively. ElastPQ measurement is also promising non-invasive method which can help differentiating FLLs and preventing unnecessary biopsies in clinical practice.

Some authors thought SWS was more accurate than the stiffness ratio for the differentiation of malignant from benign FLLs, the stiffness ratio might be useful for subclassification of benign and malignant lesions [12,24]. The lesion to parenchyma ratio may be especially of clinical value in the hepatic fibrosis patient population and may also have influence on the reproducibility of stiffness measurement of HCC [16,29]. In our results, the cut-off values for differential diagnosis were 2.06 m/s for SWS and 1.67 for SWS ratio with SWS measured in the liver parenchyma at more than 2 cm from the lesion. The area under the ROC curve in distinguishing malignant from benign FLLs was 0.704 for SWS and 0.755 for SWS ratio. Both the SWS and SWS ratio allowed good diagnostic performance in differentiation malignant and benign FLLs.

Previous studies proved that hepatocellular carcinoma (HCCs) were relatively soft compared with the background liver, when compared with other malignancy groups [14,26,30,31]. HCCs in cirrhotic livers exhibited a relatively uniform and soft interior when compared with the stiff and heterogeneous surrounding parenchyma. In our results, most of the HCCs patients were accompanied with cirrhosis (n=61) or fibrosis (n=40). Similar results were found by Gallotti et al [14] and by Guibal et al [16].

Stiffness of liver metastasis depends on the amount of fibrous and vessels of the tumor [5] and the type of primary tumor [15]. Metastases which were undergoing treatment with chemotherapy and/or anti-angiogenic therapy could affect their stiffness [12,25]. In accordance with the literature, all metastatic lesions in our study were stiffer than the surrounding liver. The overall SWS of HCCs were lower than that of metastasis. SWE could improve the identify HCC in cirrhotic livers by distinguishing between HCCs and metastasis [14].

For benign FLLs, our study showed that the mean SWS values of malignant FLLs were statistically significantly higher than benign ones including the hemangiomas. ElastPQ measurement might be helpful in differentiation of hepatic hemangioma from malignant FLLs [30-35].

Given the small numbers for individual subgroups, more detail analysis between the FLLs will be considered for our further study.

In a couple of SWE studies of normal liver parenchyma in healthy volunteers, intraobserver reproducibility was excellent in the same day measurement (ICC, 0.87-0.95) or moderate to excellent in the different day measurement (ICC, 0.64-0.84) [36,37]. The reliability analysis in our study showed that ElastPQ for the non-invasive measurement of FLLs had a good reproducibility with ICC 0.719 (95% CI: 0.658, 0.776).

Previously, Ling et al [20] had revealed significant impacts as liver location, breathing phase, and gender on ElastPQ measurement. Park et al [26] found the overall intraobserver reproducibility of SWE in evaluation of FLLs can be affected by lesion depth. Such limitations should be overcome, whenever possible, in order to improve the reproducibility and to ensure the accuracy of ElastPQ measurement [38]. Our practical experiences including: the precise selection of a measurement depth between 4.0-7.5 cm; the precise selection of ROI for SWS measurement with avoidance of necrotic portion, surrounding vascular or bile duct. To perform ElastPQ measurement with patients in the fixed position and holding their breath as requested might also be helpful to insure a good reproducibility.

Our study had some limitations. As the final diagnoses were based on histopathologic results obtained from liver surgeries, only a small number of benign FLLs was included. The overlap of values in patients with benign and malignant lesions needs to be mentioned. In some large FLLs, a different depth of measurement will bring different stiffness results. Prospective and comparative studies with other technologies are required in the future.

In conclusion, our preliminary results suggest ElastPQ is a valid, convenient, non-time consuming and, therefore, comfortable and reproducible non-invasive adjunctive technology for differentiation between malignant and benign FLLs. It is particularly suitable for patients who are not candidates for contrast enhanced imaging although further studies are required.

Conflict of interest: none declared

Acknowledgement: the work was supported by the National Natural Science Foundation of China (No. 81571676)

References
