Abstract
Conventional ultrasonographic evaluation (grey scale and Doppler) represents the first line investigation in the acute pathology of the scrotum. Its diagnosis value in acute scrotal pathology is undoubted in regard with hypervascular lesions, but in the evaluation of isoechoic and hypo/avascular lesions i.v. contrast-enhanced harmonic ultrasonography (CEUS) is recommended in establishing a firm and certain diagnosis. Besides these, CEUS has an important role in the evaluation of the remaining viable testicular tissue in cases of testicular trauma, thus guiding a limited excision surgery. This paper aims to discuss the added diagnosis value of CEUS and to illustrate this through various ultrasonographic images suggestive for acute scrotum pathology.

Keywords: testicle, ultrasonography, contrast media

Introduction
In patients presenting at the emergency room with acute scrotal symptoms the first step is to distinguish between surgical and non-surgical pathology. For this, grey-scale and Doppler ultrasonography (US) represent the first line investigations [1,2]. Contrast-enhanced harmonic ultrasonography (CEUS) has been introduced in the last decade in the evaluation of scrotal pathology. The contrast media is administered intravenous (2.4-4.8 ml), followed by a 10 ml saline solution bolus. After approximately 20 seconds, the microbubbles reach the intravascular space of the testis and may be visualized in the testicle up to 2-3 minutes after administration, then the intensity progressively decreases (wash-out phenomenon) [2-5]. CEUS presents an added diagnosis value in the acute pathology of the scrotum, being superior to non-contrast US, with a sensitivity (Se) and a specificity (Sp) up to 95% and 100, respectively (ultrasound has an 76% Se and a 45 Sp) [2]. In addition to Doppler US, CEUS also has the potential of assessing intratumoral microvascularization [6-8] thus improving conventional US. CEUS is also useful as an additional examination to conventional US in acute scrotal pathology, whether it is infections/inflammatory/vascular or traumatic.

Inflammatory and infectious scrotal lesions

Orchitis and orchiepididymitis present with acute symptoms, such as pain and swelling [9]. Most of the times the etiology is bacterial, but can also be fungal [10]. Conventional US reveals hypoechoic lesions associated with hyperemia in the affected area [10,11]. These inflammatory lesions show increased enhancement, corresponding with the hyperemia visualized on the Doppler examination (fig 1). On the course of its evolution, epididymitis can extend to the testis and develop complications such as abscess or infraction. Grey scale and Doppler US can identify these complications as well, but CEUS exam play an auxiliary role [10]. Therefore, in the presence of an abscess, CEUS reveals a lesion with intense, peripheral contrast uptake, while the centre of the lesion shows no uptake whatsoever (fig 2) [12].
Acute vascular scrotal lesions

In acute scrotum of vascular etiology, CEUS could be of great interest especially in pediatrics, since in children, the intratesticular vascularization is physiologically reduced and Doppler evaluation is limited in testicular torsion. CEUS applications in pediatrics are still limited in the absence of an US contrast media approved for pediatric use in Europe [13].

Spermatic cord torsion represents approximately 17% of scrotal emergencies and it is an acute vascular pathology which occurs more frequently in children and young adults. It consists of a partial or complete twisting of the spermatic cord which leads to immediate circulatory alterations and impairment of the testicular function and fertility, being a surgical emergency. The main symptoms are unilateral testicular pain, accompanied by a high, transverse position of the testicle in the scrotum. The cremasteric reflex may be lost [14]. Color and Power Doppler are elective and sufficient for the confirmation of a complete testicular torsion [12], CEUS does not bring additional information [5], but confirms the diagnosis, especially in the initial phase, allowing an early surgical intervention.

The typical alteration in acute testicular torsion is represented by the hypoechoicinity of the testicle and lack of vascular signal. In torsions which are up to 360° the vascularization is often still present and the diagnosis may be missed or difficult to distinguish with the help of color Doppler alone. On the other hand, CEUS may reveal a different uptake of the contrast media within the affected testicle compared with the healthy one [5].

In the case of an old torsion, a small, atrophic testicle, with a hypoechoic centre, surrounded by a hyperechoic rim can be detected. Upon Doppler interrogation there is intratesticular vascular signal [15], but the peritesticular tissues shows increased vascularity. On the CEUS evalu-
The torsion of the testicular epididymis and appendage is more frequently encountered in children, but also in young adults and the therapy is conservative. The testicle presents a normal US appearance. The testicular appendage has a variable aspect: most often it shows increased echogenicity and inhomogeneity or it can be hypoechoic and present peripheral vascular signal. In evolution the appendage becomes hyperechoic, secondary to calcium depositions and it can spontaneously detach [16]. A testicular appendage >5.6 mm without vascular signal is suggestive for appendage torsion [20]. A testicular appendage >5.6 mm without vascular signal is suggestive for appendage torsion [16]. The torsion of the testicular epididymis and appendage is more frequently encountered in children, but also in young adults and the therapy is conservative. The testicle presents a normal US appearance. The testicular appendage has a variable aspect: most often it shows increased echogenicity and inhomogeneity or it can be hypoechoic and present peripheral vascular signal. In evolution the appendage becomes hyperechoic, secondary to calcium depositions and it can spontaneously detach [16]. A testicular appendage >5.6 mm without vascular signal is suggestive for appendage torsion [20]. A testicular appendage >5.6 mm without vascular signal is suggestive for appendage torsion [16]. The role of CEUS in the evaluation of testicular appendage torsion has not been yet described in literature. Segmentary infarction may be identified as a complication of acute orchitis/orchiepididymitis, but may also be idiopathic or encountered in testicular torsion, hypercoagulation conditions, vasculitis, or trauma. Most of the times has an hypoechoic aspect or a mixed echogenicity, it is well defined, has wedge or round shape and decreased or absent vascularity. Segmentary infarction may sometimes raise differential diagnosis issues with a hypovascular tumor [4,18,19]. In these cases, CEUS examination brings additional information regarding the lack of CE within the lesion [4]. Yet, if the patients have undergone a US examination within the first 24 hours from pain onset, the segmentary testis infarction may present a similar echogenicity as the unaffected parenchyma, but with reduced vascularity [20], a situation when a firm diagnosis may be missed. A subacute segmentary testicular infarction present peripheral uptake, most probably due to the perilesional inflammatory changes and local edema which compresses the adjacent healthy tissue [20]. That is why, in the first phase, the differential diagnosis between a subacute segmentary infarction and an abscess is rather difficult, both lesions presenting irregular margins and predominantly peripheral enhancement [21]. Nevertheless, the segmentary infarction has a lobular distribution, which in time decreases in size, it changes its aspect.
and the peripheral CE subsides after approximately 17 days. Later on, spots of intralesional vascular signal may be seen [20,22,23]. A few cases of complete testicular infarction have been described in the context of previous acute epidididmitis [10]. In these situations US may show signs of epididymitis associated with a relatively normal appearance of the testicles and absence of an intratesticular vascular signal. After contrast administration a completely ischemic testicle does not enhance [10]. The differentiation of a segmentary infarction from a complete infarction is essential to the management of the patient, since in the latter a total orchiectomy is necessary [10].

Posttraumatic scrotal lesions

Traumatic pathology of the scrotum and testicle is most frequently encountered in sports and motorcycle accidents [24]. Intra or peritesticular hemorrhages may be encountered, but the scrotal wall, the epididymis, and even the urethra may also be involved [25]. The Doppler evaluation is mandatory in order to identify a possible traumatic lesion of the testicular pedicle within the spermatic cord [25].

The aspect of the hematoma or the hematocele on the US exam is variable depending on the time passed from the trauma. Immediately after the traumatic injury, the US appearance of the hematoma is echoic and in time it becomes anechoic, with or without septum inside [26]. The color Doppler examination does not reveal vascular signal inside this lesion [14]. The extent of hematomas and hematomas may be underestimated due to the similar echogenicity of the testicular parenchyma, but on the CEUS examination, they do not show any enhancement. If there is any vascular signal identified on the CEUS, this is most probably caused by an active bleeding inside the hematoma [2]. If the hematocele is not associated with testicular rupture, the treatment is conservatory [5].

In testicular fracture the contour of the testicle and the tunica albuginea are intact, but there is at least one trajectory across the testicular parenchyma that may be associated with a hematoma. The testicular parenchyma is disorganized [26]. A testicular fracture may pass unnoticed if there is massive testicular edema or it may appear as an hypoechoic line passing through the testicle, with or without an associated intratesticular hematoma. Color Doppler evaluation does not reveal any signal at this level [14,21]. CEUS detects best the viable testicular tissue and its delimitation as well as the fracture line [2,27] and the aspect is correlated with the severity of the trauma: in testicular contusion there is a homogeneous,
almost normal uptake; while in a severe trauma, associated with fracture, the CE is inhomogeneous, scattered, and weak (fig 7). When testicular trauma is associated with torsion or the testicle is entirely disorganized no CE is found [12,27].

In testicular rupture there is a solution of continuity of the tunica albuginea with herniation of testicular parenchyma [14]. Conventional US is capable to identify testicular rupture with a Se of up to 100% and a Sp of 65% [28]. Additionally, US may show hyper of hypoechoic focii which correspond to hematomas, infarctions, or hematoceles [26], but cannot differentiate between herniated parenchyma and a hematoma with similar echogenicity [24]. CEUS examination can identify intratesticular fluid collections which develop early in a trauma, as well as their extent and the solution of continuity at the level of tunica albuginea [24]. The CEUS exam has an important role in traumatic scrotal pathology in situations when conventional US cannot clearly establish if surgery is needed or not [5] (for example in the case of a hematocel without a clear testicular fracture line on the conventional US) or it cannot define the complete extension of the lesions (such as in the situation of a hematoma with an echogenicity similar with that of the testicular parenchyma or for the evaluation of the testicular tissue viability).

Conclusion. The conventional US appearance is most frequently suggestive in the evaluation of the acute scrotum. The added role of CEUS is significant especially in testicular torsion and in the complications of acute orchitis/epididymitis, when it can bring information which are subtle or non-existent on conventional ultrasound. Also, CEUS presents a significant additional value in the assessment of testicular trauma, being capable to identify the extent of the lesions, possible hematomas and non viable testicular tissue.

Conflict of interest: none

References

10. Yusuf G, Sellars ME, Kooiman GG, Diaz-Cano S, Sidhu PS. Global testicular infarction in the presence of epidymitis clinical features, appearances on grayscale, color doppler,
115
and contrast-enhanced sonography, and histologic correla-
12. Cokkinos DD, Antypa E, Kalogeropoulos I, et al. Contrast-