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Abstract
In this paper we discuss the problem of computer aided evaluation of the severity of steatosis disease using ultrasound 

images, the aim of the study being to compare the automatic evaluation of liver steatosis using random forests (RF) and sup-
port vector machine (SVM) classifiers. Material and method: One hundred and twenty consecutive patients with steatosis 
or normal liver, assessed by ultrasound by the same expert, were enrolled. We graded steatosis in four stages and trained two 
classifiers to rate the severity of disease, based on a large set of labeled images and a large set of features, including several 
features obtained by robust estimation techniques. We compared RF and SVM classifiers. The classifiers were trained using 
cross-validation. There was 80% of data randomly selected for training and 20% for testing the classifier. This procedure was 
performed 20 times. The main measure of performance was the accuracy. Results: From all cases, 10 were rated as normal 
liver, 70 as having mild, 33 moderate, and 7 severe steatosis. Our best experts’ ratings were used as ground truth data. RF out-
performed the SVM classifier and confirmed the ability of this classifier to perform well without feature selection. In contrast, 
the performance of the SVM classifier was poor without feature selection and improved significantly after feature selection. 
Conclusion: The ability and accuracy of RF to classify well the steatosis severity, without feature selection, were superior as 
compared to SVM.
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Introduction

Steatosis is one of the most prevalent liver diseases 
worldwide encountered, especially in developed coun-
tries. The main feature of steatosis is the accumulation 
of fat tissue (usually triglycerides) within liver cells, as 
a result of malfunctions in liver metabolic processes. A 
common reason of this malfunction is the alcohol con-
sumption on a regular base. However, steatosis is also 
frequent in non-alcoholic patients. This kind of steatosis 
is named nonalcoholic fatty liver disease (NAFLD) [1] 
and can be caused by a variety of metabolic disorders, 
such as obesity, diabetes, rapid weight loss, etc. 

NAFLD represents a broad range of conditions, start-
ing from simple steatosis, which usually follows a benign 
and stable clinical stage, and ending with the nonalco-
holic steatosis, with a high risk of progress to cirrhosis 
and hepatocellular carcinoma (HCC). Steatosis is also 
commonly found in histological specimens from patients 
infected with hepatitis virus C (HCV) being considered 
an additional risk factor for these patients [2] due to its 
association with fibrosis progression.

Early detection of steatosis, as well as evaluation of 
the progression or regression of the disease during medi-
cal treatment are important. The most accurate test for 
steatosis assessment is the liver biopsy. This is a highly 
invasive procedure, associated with risks, given that a tis-
sue sample from the liver is extracted. Additionally, the 
liver biopsy results may be affected by sampling errors 
and interobserver variability [3]. Therefore a safe prac-
tice is to use the golden standard liver biopsy only when 
noninvasive methods fail. 
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Advanced biomedical imaging techniques avail-
able today have been widely used in order to detect and 
evaluate steatosis. A computed tomography (CT) study 
[4], reported reliable results, with sensitivity of 82% and 
specificity of 100% of the method in steatosis evaluation. 
The comprehensive study of Bohte et al [5] revealed that 
magnetic resonance imaging, (MRI) outperforms, CT in 
the diagnosis and quantification of steatosis. However, 
given the inherent exposure to ionizing radiation and the 
high costs, CT and MRI should be used with caution, es-
pecially in children. 

In contrast with CT and MRI, ultrasound (US) imag-
ing is a completely noninvasive method for evaluation 
of the liver. Also, US has a low cost making this method 
suitable for screening and progression evaluation during 
treatment. 

The performances of US steatosis evaluation studies 
vary largely in the literature, probably due to the occur-
rence of concomitant liver pathology which may affect 
the liver image. Fibrosis, for example, is also hyperechoic 
and may or may not coexist with steatosis. Additionally, 
the visual perception of brightness and colors is known to 
be relative. While this feature is, most of the time, useful 
in life, it often makes medical image analysis a challeng-
ing task. In spite of the superior intelligence and experi-
ence of experts performing visual analysis of US images, 
the results remain highly subjective, as demonstrated by 
the relatively high interobserver and intraobserver vari-
ability. This is especially true when confronted with the 
problem of steatosis severity quantification.  According 
to Strauss et al [6], the mean interobserver and intraob-
server agreement rates for the presence of steatosis are 
72% and 76%, while for severity of the disease, an in-
terobserver agreement of 47-59% and an interobserver 
agreement of 59-64% were obtained. The intraobserver 
agreement rate for severity of the disease is 55%-68%. 
To improve these results, several computer vision based 
solutions have been proposed [7-10].

A recent dominant trend in computer assisted medi-
cal image analysis is the design of computer aided diag-
nosis systems (CAD) [11]. Such a system consists of an 
autonomous or semi-autonomous diagnosis procedure, 
obtained by methodologies developed in the field of 
pattern recognition [12-15]. The most important factors 
determining the performances of a CAD system are the 
selection of features and the selection of the classifier.

The most conspicuous image feature generated by ac-
cumulation of fat in the liver is the increase of the paren-
chyma brightness, as a result of the higher echogenicity 
of the fat cells. A related feature is the posterior attenu-
ation (PA), also called deep attenuation, consisting of a 
progressive decrease of the liver brightness from surface 

to bottom and a reduced definition of the diaphragm.  The 
average brightness and the PA in a selected region of in-
terest (ROI) are used in most CAD systems for steatosis 
evaluation found in the literature. 

Fat accumulation in the liver also affects the con-
trast of the vessels, since it diminishes the acoustic im-
pedance between the parenchyma and the vessel walls. 
Vessels appear to be dilated and with blurred contours. 
Such changes may be characterized by means of image 
texture descriptors. Texture features include first order 
texture parameters, computed from ROI histograms [16], 
wavelet transform coefficients [17] and co-occurrence 
tensors [17]. First order texture parameters are simple to 
compute and have proved to be useful [16], although the 
spatial information is lost. This is in contrast to wavelet 
or co-occurrence tensors.

A comparative study about the usefulness of PA and 
first order texture features was calculated from the image 
histogram by Lupşor et al [16]. In this study the steatosis 
degree in patients infected with VHC was evaluated and 
they found that PA is capable  of discriminating better 
than first order statistics based features. Reported work 
was carried out on different types of groups of patients 
taking into account liver state; some were already diag-
nosed with fibrosis or Hepatitis C, which alter the liver 
tissue microstructures and implicitly the characteristics 
of the ultrasound images. This is the reason why compar-
ison of various solutions proposed for steatosis detection 
and evolution stage assessment is difficult. 

To classify the steatosis based on extracted features, 
several methods are available and have been tested in the 
literature. The most popular are the Bayesian classifier 
with Gaussian model, the Parzen window nonparametric 
classifier, the k Nearest Neighbour classifier (kNN), the 
random forests (RF), and the support vector machines 
(SVM). According to current literature, the SVM was the 
most successful in quantifying diffuse liver disorders [17].

The potential advantage of RF is that this type of clas-
sifier has intrinsic mechanism of feature selection thus it 
has the ability to work with a high number of characteris-
tics without deteriorating its performances. RF considers 
at the level of every decision node a single feature which 
performs best among the available ones, according to a 
certain criterion, like Gini index or entropy. Addition-
ally, the classification process by RF resembles well with 
the medical diagnosis procedure. Moreover, it calculates 
the variable importance. This can be used to select and 
rely on best features for classification. RF is one of the 
most accurate ensemble classifiers used at this moment in 
computer vision community

The aim of our study was to compare the perfor-
mances of the SVM and RF classifiers in the assessment 
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of steatosis severity rating using ultrasound images. For 
the automatic classification we assembled the feature 
vectors called training vectors. The classifier developed 
an algorithm for mapping the feature vectors and  used 
training vectors for learning. SVM classifies well with a 
low number of data. RF belongs to the group of ensemble 
classifiers, being new in the field of computer vision and 
has not been used before in this domain. 

Material and method

The study group consisted of 120 consecutive pa-
tients diagnosed with steatosis or normal liver by con-
ventional abdominal ultrasound, in a Gastroenterology 
out-patient department. The diagnosis of steatosis was 
established based on the increased US brightness (bright 
liver) of the liver at transabdominal ultrasound, as com-
pared to the nearby kidney parenchima, accompanied or 
not by PA. Three level of severity of steatosis were estab-
lished depending on the intensity of PA: mild (discrete 
attenuation), moderate (obvious attenuation), and severe 
steatosis (difficult or impossible to visualize posterior 
diaphragm). All patients were assessed by US and the 
liver was classified by the same expert, a senior in Gas-
troenterology and expert in abdominal US as normal or 
with mild, moderate or severe steatosis. In all patients, at 
least 2 pictures were stored, in transverse and longitudi-
nal subcostal sections. 

All the images were than processed using SVM and 
RF. Parameters used were the minimum  and 
maximum gray level values in the liver ROI , 
minimum  and maximum attenuation in the liv-
er ROI , the median grey levels for liver ROI 
(MedGL), the median gray levels for another ROI, being 
interactively selected for reference in fat-free parenchy-
ma belonging to a kidney (MedGK), the variance (VAR) 
in the ROI, the skewness (SKW) and the kurtosis (KRS). 
Our best experts’ ratings were used as ground truth data. 
The classifiers were trained using cross-validation. There 
was 80% of data randomly selected for training and 20% 
for testing the classifier. This procedure was performed 
20 times.

Computer vision methods were used for automatic 
evaluation of liver steatosis from US images. We imple-
mented a robust method from computer vision to com-
pute the PA. We used the OpenCV library. For SVM clas-
sification Rapidminer v5.3 was used.

The study was approved by the local Ethics Commit-
tee.

According to usual practice, we extracted a set of im-
age features from a user defined rectangular ROI (fig 1). 
The first feature we extracted in order to characterize the 

overall brightness of the ROI is the median.  Compared 
to the mean value, the median is more robust to the pres-
ence of outlier samples within the measurement window, 
since ˆ ˆarg min | |ii i kk

m m y= −∑ (1) with 1m̂ being the 
median and 2m̂ the mean. The mean is much more sensi-
tive to outlier samples, which influence the estimate with 
a weight which increases with the difference to the es-
timate. This is why, if the mean is to be used, the ROI 
should be selected much more carefully, to avoid inclu-
sion of big vessels or of the diaphragm. The median of 
the ROI can be computed very fast from the histogram. 
Considering the normalized histogram, h(k), the median 
is 1ˆ | ( 1) 0.5, ( ) 0.5m k h k h k= − < ≥ (2). 

The second feature used in this work is the PA. To 
find this feature, we computed the brightness profile 
curve generated from the defined ROI. Each point on 
the curve was generated by averaging the image along 
its line: ( ) ( , ) / 1

j ROI j ROI
C k I j k

∈ ∈
=∑ ∑ (3). The bright-

ness profile of a typical ROI is illustrated in figure 1. 
It can be seen that, in spite of the heavy smoothing, 
the curve still has a high degree of irregularity as well 
as a high degree of nonlinearity.  Ribeiro et al [17] de-
fined the PA as the slope of the line which “best” fits the 
curve. The best fit is obtained through linear regression, 

2arg min ( ( ))a
k

PA ak b f k= + −∑  (4). Again, the least 
squares fit used was not robust to the presence of out-
lier data, as previously pointed out, for the case of the 
overall brightness characterization.  For the same reason, 
we used the median estimator again, although not by 
dropping the squaring up operation in the last equation. 
Instead of that, we used an algorithm inspired from the 
RANSAC [18]. Moreover, to address the nonlinear char-
acter of the brightness profile, we fitted the curve with 
two lines. In this way, we obtained two slopes and two 
intercept parameters and subsequently studied the rel-
evance of all these parameter for steatosis severity clas-
sification. We performed two robust regressions, namely 
one from the upper part, containing 30% of the ROI and 

Fig 1. Region of interest and profile curve (red)
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one from the lower part, which contains the rest of the 
curve. Further, we computed two PA coefficients and two 
intercept values, corresponding to robust estimates of the 
minimum gray level and maximum gray level. Minimum 
and maximum signal values are notoriously sensitive to 
noise and outliers, much more than the mean value, and 
our robust regression method dealt  effectively with the 
problem. 

To obtain estimates that are robust from the line param-
eters, described by the next equation: y mx n= + , (5) 
in the spirit of Random Sample Consensus (RANSAC), 
we formed sets of points of minimal size  required to 
find estimates, for m and n. That is we formed sets of 
pairs of points, separated by t lines, a parameter of the 
method which balances the number of possible pairings 
and the effect of noise. A small value of t introduces too 
much quantization noise, while a too large one restricts 
the number of pairs of points. Its value is not critical and 
was set in all experiments to 20 lines. Unlike  the original 
RANSAC algorithm, we did  not use random sampling. 
Instead, we formed all pairs we could with a certain value 
of t. More minimal size samples could be obtained by 
using multiple values for t, but this option was not in-
vestigated.

A safe assumption is to consider that at least half of 
the minimal sets are free from outliers. Consequently, 
we defined our estimates by the following equations:

,kyk =  ),(kCxk =  ,tky t
k +=  )( tkCxt

k += (6). In 
equation (6), we used t=20 for all experiments reported 
in the paper. For each pair of points, by using equa-
tion (6), we found a candidate solution, ( , )k km n , with 

kk yxm ∆∆= / , (7) and kk ymxn ∗+= , (8). Then can-
didate parameters for best fit of the line was defined as,  

∑ −=
k kmmm |ˆ|minargˆ  ∑ −=

k knnn |ˆ|minargˆ  (9) 
which are known to be the medians of candidate solu-
tions.

Using the robust line fit, for the upper part and the 
lower part of the brightness profile C(k), is illustrated in 
figure 2. By using this we extracted the minimum  
and maximum gray level values in the ROI , the 
minimum  and maximum attenuation in the ROI 

.
Also, we computed the median grey levels for liver 

ROI (MedGL). Further, we computed the median gray 
levels for another ROI, being interactively selected for 
reference in fat-free parenchyma belonging to a kidney 
(MedGK). Using the histogram of the ROI we computed 
the variance (VAR), skewness (SKW) (10) and the kur-
tosis (KRS) (11).
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To classify the severity levels of steatosis we consid-
ered four classes: absent, mild, moderate, and severe. 

We implemented two versions of RF. The first ver-
sion classified using all four classes simultaneously for 
decision. Each node of the Random forests was improved 
so that it extracted the minimum value of Gini index of 
the split data taking into account all the classes. The sec-
ond version of the RF classifier (fig 3) used four succes-
sive dichotomies. The theoretical reason in considering 
this version is that discrimination between two classes 
is assumed to be feasible with simpler shapes of class 
borders. The first dichotomy split the data into liver with 
no steatosis and liver with steatosis. In the second step 
from the liver with steatosis set, the mild steatosis was 
extracted. Next the dichotomy between moderate and se-
vere steatosis was used. Since in our previous work [10], 
the RF classifier using successive dichotomies performed 
best, we present here only the results of this classifier.

Fig 2. Regression fitting using two lines
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The SVM classifier used for comparison reasons in 
this paper is a binary classifier. In its basic form, SVM 
maps the data into two classes by building hyperplanes. 
The hyperplane that splits the samples at a largest pos-
sible margin from support vectors of both classes is se-
lected. To cope with more complex data, which are not 
linearly separable, the data vectors are mapped on a high-
er dimensional space, by the so called kernel trick. SVM 
classifiers are known for their ability to generalize well 
from low training sample sizes. 

The main measure of performance and comparison 
was the accuracy.

For a successive dichotomy classifi-
er, the Probability of error can be computed as 

 (12) where Pi, and Pei are prior class probabilities and re-
spectively the error probabilities of the three binary clas-
sifiers in figure 3.

The accuracy of the classifier is defined as: 
A=(TP+TN)/(TP+TN+FP+FN) (13) where TP is the val-
ue of true positives, TN gives the number of true nega-
tives, FP are the false positives and FN the false nega-
tives.

The accuracy is related to the probability of error by 
the equation:  A=(1-Pet)*100% (14).

Results

The 120 patients included in our study had at ab-
dominal US, normal liver (10 cases) mild steatosis (70 

cases), moderate steatosis (33 cases) and severe steatosis 
(7 cases). 

In the first set of experiments, we used for both classi-
fiers the same set of nine features previously mentioned. 
The results of the SVM classifier are shown in Table I, 
while the results of the RF classifier are shown in Table 
II.

In a second set of experiments, we performed feature 
selection, guided by the variable importance index given 
by the RF classifier (table III). The best results of our 

Fig 3. Dichotomy classification

Table I. Support Vector Machines dichotomy classification

Classification

Healthy 
versus 

steatosis

Mild versus 
moderate + 

severe 
steatosis

Moderate 
versus 
severe 

steatosis 
Minimum classifica-
tion rate 91.67 70.91 82.5

Maximum classifica-
tion rate 91.67 72.73 82.5

Standard deviation 0.0 0.7469 0.0
Median 91.67 72.73 82.5
Accuracy 60.51

Table II. Random Forests dichotomy classification

Classification
Healthy 
versus 

steatosis

Mild versus 
moderate 
+ severe 
steatosis

Moderate 
versus 
severe 

steatosis
Minimum classifica-
tion rate 95.8 90.9 37.5

Maximum classifica-
tion rate 100.0 100.0 100.0

Standard deviation 1.2927 3.1123 23.3941
Median 100.0 100.0 81.25
Accuracy 90.84

Table III. Variable importance dichotomy

Variable importance [%]
Maximum attenuation 3.45763
Maximum grey level 8.031634
Minimum attenuation 12.7997
Minimum grey level 6.656511
Liver median 42.49108
Median kidney 4.818146
Variance 13.20869
Skewness 3.766459
Kurtosis 4.770152
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experiments with the SVM and the RF classifiers using 
several feature sets are given in tables IV-VII.

From the tables, it can be seen that the accuracy of the 
SVM classifier is significantly higher after feature selec-
tion, while the results of the RF classifier are almost the 
same, although slightly lower. 

This experiment gives the best result for the SVM clas-
sifier. As in the experiments using the pair of features con-
sisting of  and MedGL, the accuracy of the SVM is 
improved by feature selection, while the results of the RF 
classifier are poorer than those obtained with the full set.

After the best feature set selection the accuracy of the 
SVM classifier increased from 60.51 with the full set to 
87.78, with the feature pair consisting of the minimum at-
tenuation in the ROI  and the median grey levels 
for liver ROI (MedGL). The accuracy of the RF classifier 
is best with the full feature set (90.84). These results are 
a confirmation of the theoretical feature selection mecha-
nism embedded in the RF learning as an algorithm.

Discussion 

RF is a relatively new ensemble classifier, which has not 
been used until now for steatosis severity evaluation. Since 
the SVM classifier proved to be the best for most feature 
sets in the recent work of Ribeiro et al [17], and because the 
SVM classifier was also used in most of the previous work 
for steatosis evaluation, we compared the performance of 
the RF with that of SVM. We concluded that RF based stea-
tosis rating outperforms SVM classification, as well as hu-
man intraobserver and interobserver agreement rates.

In this work, the classifiers were trained on a set of 
120 images, labeled by our best expert, unlike in the pre-
vious work, using biopsy data. While biopsy tests are 
undoubtedly more reliable than human evaluation, bi-

Table IV. Support Vector Machines dichotomy classification by 
maximum gray level values in the liver ROI , and me-
dian grey levels for liver ROI (Medgl)

Classification

Healthy 
versus 

steatosis

Mild versus 
moderate 
+ severe 
steatosis

Moder-
ate versus 

severe 
steatosis 

Minimum clas-
sification rate 94.17 90.0 85.0

Maximum clas-
sification rate 94.17 91.82 85.0

Standard deviation 0.0 0.5343 0.0

Median 94.17 90.91 85.0

Accuracy 81.12

Table V. Random Forests dichotomy classification maximum 
gray level values in the liver ROI , and median grey lev-
els for liver ROI (Medgl)

Classification

Healthy 
versus 

steatosis

Mild versus 
moderate 
+ severe 
steatosis

Moder-
ate versus 

severe 
steatosis 

Minimum clas-
sification rate 91.7 86.4 75.0

Maximum clas-
sification rate 100.0 100.0 100.0

Standard deviation 2.8120 4.2442 7.3392

Median 93.75 95.5 100.0

Accuracy 87.10

Table VI. Support Vector Machines dichotomy classification 
classification  by minimum attenuation in the liver  and 
median grey levels for liver ROI (Medgl)

Classification

Healthy 
versus 

steatosis

Mild versus 
moderate 
+ severe 
steatosis

Moder-
ate versus 

severe 
steatosis 

Minimum clas-
sification rate 95.0 94.55 90.0

Maximum clas-
sification rate 95.0 96.36 92.50

Standard deviation 0.0 0.6871 1.1754

Median 95.0 95.45 90.0

Accuracy 87.78

Tabel VII. Random Forests dichotomy classification  by mini-
mum attenuation in the liver  and median grey levels for 
liver ROI (Medgl)

Classification

Healthy 
versus 

steatosis

Mild versus 
moderate 
+ severe 
steatosis

Moder-
ate versus 

severe 
steatosis 

Minimum clas-
sification rate 87.5 81.8 87.5

Maximum clas-
sification rate 100.0 100.0 100.0

Standard deviation 4.2488 4.5553 6.3802

Median 95.8 93.2 100.0

Accuracy 87.29
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opsy data is scarce. Consequently, results of experiments 
based on biopsy data are drawn from rather small data 
sets, calling for caution in interpretation. It is especially 
difficult to ask for biopsy tests in normal patients, given 
the invasive nature of this test and the associated risks. 

Comparison of the RF results with the full feature set 
and selected subsets, which did not contain texture data, con-
firmed that texture encodes valuable information for steato-
sis rating by visual analysis, in spite of the fact that the SVM 
classifier could not use effectively this information from hu-
man labeled images, in contrast with results on biopsy la-
beled samples. We believe that further work and classifier 
performance evaluation on larger datasets, possibly obtained 
by combining biopsy labeled images with expert or group of 
expert labeled images is worth following up. 

Direct comparison of the classification accuracy of 
the proposed method with the results of the most rele-
vant work on computer aided diagnosis of steatosis in 
the literature [7,16,17] is not possible, since these papers 
report only results of two class (steatosis versus normal) 
classification, in contrast with our study, targeting auto-
matic quantification of the steatosis severity. Although 
our overall accuracy compared favorably with Nagy et 
al [7] and Lupşor et al [16] results and are similar to the 
Ribeiro et al [17] work, comparison is still problematic, 
given the different datasets and reference method used in 
our study. However, it is possible to assess the usefulness 
of the features used in literature in the present work. 

The limit of this study is that the automatic classi-
fication uses expert medical assessment for the positive 
diagnosis, a subjective tool and not liver biopsy. On the 
other hand in clinical practice this is the algorithm used 
for diagnosis, and experience plays an important role in 
US assessment.

Conclusions. In this study the ability and accuracy 
of RF to classify well steatosis severity, without feature 
selection, were superior as compared to SVM.
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